\qquad

Class: Applied Math Teacher: Mr Swenson
DUE: FIRST DAY OF SCHOOL
Ladies and gentlemen! Thank you for flying AirMath! The summer has often been described as an educational wasteland, where good minds go to die. However, to prevent certain decay and possible death of your math skills, I have put together some work for you to do before class begins in the fall.

Also, here are some basic supplies you will need for success in Applied Math:

Apps and sites we will use in class:	Swenson's Contact Info
- YouTube - Desmos - www.airmath.net - QR Code reader - Google Classroom	

We will be using computers almost daily. Our class will require use of your student.bbrsd.org account, so make sure you have your password and account set up on your devices. Google Sheets, Slides, Documents, Maps and Classroom will be used nearly every day.

Lastly, provide the best email for contacting your parent or guardian:

Have a delightful and math-filled summer!
Regards,
Mr Swenson
www.airmath.net
wswenson@bbrsd.org

Applied Math

Summer Work/Fun

Scale Drawing

In the grid paper below, make a scale drawing of a room in your place of residence.
You must measure and include the furniture, closets, windows and doors.
Chosen Room: \qquad
Dimensions of the room: \qquad
How high are the ceilings? \qquad
Scale: 1 unit =
(suggested 1 unit - $1 / 2$ foot)

Sample Drawing

																												\square

Applied Math

Summer Work/Fun

Data Collection

For one week, please record the following data from your personal habits. The dates I recorded are \qquad .

Category	Fri	Sat	Sun	Mon	Mean
\# of hours slept					
\# of hours watching videos					
\# of miles in a car					
\# of min of exercise					
\# of min talking (actual speaking) to an adult					
\# of digital messages sent					
For ONE hour, count the number of times you unlock your device					
Approximate time you went to SLEEP (not to bed)					

I observed the following:
1.
2.
3.

Applied Math

Summer Work/Fun

Directions: Show all work where you can. Circle your answers.

Evaluate the expression.

1. $-11+6$
2. $-7-19$
3. $9(-9)$
4. $42 \div(-6)$
5. $5(9-15)$
6. $\frac{30-6}{2 \cdot 4^{2}-20}$

Evaluate the expression. Write your answer in simplest form.
7. $\frac{3}{8}+\frac{7}{8}$
8. $\frac{2}{3}-\frac{5}{12}$
9. $12.65-9.899$
10. $\frac{6}{9} \times\left(-\frac{12}{14}\right)$
11. $\frac{18}{7} \div \frac{6}{14}$
12. 17.5×3.65
13. $\frac{1}{3}-\left(\frac{2}{9}+\frac{5}{6}\right)$

Evaluate the expression for the given value of the variable.
30. $-6 x$ when $x=-9$
31. $\frac{y}{7}$ when $y=-49$

Solve the equation if possible.
62. $16 x+24=7(x+6)$
63. $-4(2 x-1)=3-8 x$

Applied Math

Summer Work/Fun

Interest

The formula to calculate new amount, A, after t years when P is the principal (initial amount) with rate r compounded n times per year is $A=P\left(1+\frac{r}{n}\right)^{n t}$. Simple interest is calculated using $I=P \cdot r \cdot t$, where I is the interest.

Find each balance.

1.

Principal	Interest Rate	Compounded	Time (years)	Balance
$\$ 400$	7%	annually	3	
$\$ 8,000$	5%	annually	9	
$\$ 1,200$	4%	semi-annually	2	
$\$ 50,000$	6%	semi-annually	6	

Find the simple interest.

5. $\$ 900$ deposited at an interest rate of 3% for 5 years
6. $\$ 1,348$ deposited at an interest rate of 2.5% for 18 months

Complete each table. Compound the interest annually.

7. $\$ 5,000$ at 6% for 4 years.

Principal at Beginning of Year	Interest	Balance
Year 1: \$5,000		
Year 2:		
Year 3:		
Year 4:		

Complete the following formulas using the variables indicated

Figure	Perimeter	Area	Example: Find the area and perimeter of each. ($\pi \approx 3.14$)
Square			
Rectangle \square			
Triangle			
Circle			
Trapezoid			
Rhombus			What is the area, in square centimeters, of rhombus $R S T V$ if $R T=16 \mathrm{~cm}$ and $S V=12 \mathrm{~cm}$?

Applied Math

Summer Work/Fun

Basic Statistics

A giraffe was 1 ft tall at birth, 7 ft tall at the age of 4 , and $11 \frac{1}{2} \mathrm{ft}$ tall at the age of 7 .

1. Use the data to make a (age, height) scatter plot.
2. Draw a trend line.
3. Write an equation for your trend line in slopeintercept form.
4. Use your equation to find the following information.
a. the giraffe's height at the age of 5

b. the age at which the giraffe was 16 ft tall

A hippopotamus weighed 700 lb at the age of 1 and $1,900 \mathrm{lb}$ at the age of 3 , and $2,500 \mathrm{lb}$ at the age of 4 .
5. Use the data to make a (age, weight) scatter plot.
6. Draw a trend line.
7. Write an equation for your trend line.
8. Use the equation to predict the following information.
a. the hippo's weight at the age of 8

b. the age at which the hippo weighed $7,900 \mathrm{lb}$
9. Can this equation be used to predict the hippo's weight at any age? Explain.
\qquad
\qquad

